当前位置:求职简历网 > 知识 > 正文

结晶学

结晶学研究对象及其科学地位 地球科学的研究对象是地球的整体,它研究固体地球的物质组成、运动或存在形式及其形成与变化的条件和过程。“结晶学与矿物学”是地球科学专业的主干课程,其教学目

结晶学研究对象及其科学地位

地球科学的研究对象是地球的整体,它研究固体地球的物质组成、运动或存在形式及其形成与变化的条件和过程。“结晶学与矿物学”是地球科学专业的主干课程,其教学目的,便是理解和掌握地球固体物质(目前尚包括月岩及陨石)基本组成单位的矿物,理解和掌握其主要内外属性、形成作用及其在人类生产生活中的用途。由于矿物是天然产出的晶体,对其内外属性、形成变化和用途的认识都将以结晶学理论为基础。为此,我们将以结晶学作为本课程的先导性内容。结晶学(Crystallography)是以晶体为研究对象,以晶体的生成和变化、晶体外部形态的几何性质、晶体的内部结构、化学组成和物理性质及其相互关系为研究内容的一门自然科学。它主要包括以下分支:——研究晶体外部几何形态及其规律性的几何结晶学(geometrical crystallography)——研究晶体内部结构中质点排列规律及其缺陷的晶体结构学(crystallology)——研究晶体发芽、生长和变化过程与机理的晶体发生学(crystallogeny)——研究晶体化学组成和结构及其关系的晶体化学(crystallochemistry)——研究晶体物理性质及其产生机理的晶体物理学(crystallophysics)结晶学的学科体系是在作为矿物学分支之一的几何结晶学基础上发展起来的,其形成历史大约经历了300余年。19世纪中叶以来,人们不断探索晶体的内部结构特征,在19世纪末期形成了较成熟的几何模型,开始研究人工合成晶体,并逐渐与数学、物理学和化学相融合,从而脱离了矿物学而成为一门具自身完整体系的独立学科。1912年,人类成功利用X射线具体测定了晶体的结构,大大推动了结晶学的飞速发展。尤其是到20世纪末期,借助于透射电子显微镜等微束分析技术及谱学技术,人类实现了直接观察和分析晶体内部原子排列及其电子状态的梦想,使结晶学跨入了以微区、精细为特征的现代研究阶段。如前所述,现代结晶学以与数、理、化等基础学科的高度融合为特征,因此学好数理化,对结晶学的深入研究是十分必要的。此外,由于结晶学是矿物学的先导课程,因此也是与矿物学有关的其他地球物质科学,如岩石学、矿床学、宝石学、地球化学、土壤学,与矿物学有关的研究地球物质运动形式的构造地质学,研究地球物质形成与变化过程的地层学和古生物学,研究地球物质与生物交互作用及生物体中结晶物质的地球生物学、生命矿物学和矿物药学的重要基础。在应用科学技术领域,许多学科如选矿学、冶金学、金属与非金属材料学、化学工艺学、药物学等,都与结晶学有着密切的联系。因此,结晶学不仅是地球科学及其延伸学科的重要专业基础,也是许多其他关乎国计民生的理论和技术科学的重要专业基础。

结晶学的研究

在X射线衍射晶体学提出之前,人们对晶体的研究主要集中于晶体的点阵几何上,包括测量各晶面相对于理论参考坐标系(晶体坐标轴)的夹角,以及建立晶体点阵的对称关系等等。夹角的测量用测角仪完成。每个晶面在三维空间中的位置用它们在一个立体球面坐标“网”上的投影点(一般称为投影“极”)表示。坐标网的又根据不同取法分为Wolff网和Lambert网。将一个晶体的各个晶面对应的极点在坐标网上画出,并标出晶面相应的密勒指数(Miller Indices),最终便可确定晶体的对称性关系。现代晶体学研究主要通过分析晶体对各种电磁波束或粒子束的衍射图像来进行。辐射源除了最常用的X射线外,还包括电子束和中子束(根据德布罗意理论,这些基本粒子都具有波动性,可以表现出和光波类似的性质)。晶体学家直接用辐射源的名字命名各种标定方法,如X射线衍射(常用英文缩写XRD),中子衍射和电子衍射。以上三种辐射源与晶体学试样的作用方式有很大区别:X射线主要被原子(或离子)的最外层价电子所散射;电子由于带负电,会与包括原子核和核外电子在内的整个空间电荷分布场发生相互作用;中子不带电且质量较大,主要在与原子核发生碰撞时(碰撞的概率非常低)受到来自原子核的作用力;与此同时,由于中子自身的自旋磁矩不为零,它还会与原子(或离子)磁场相互作用。这三种不同的作用方式适应晶体学中不同方面的研究。

分子生物学的前景?

很好啊。在分子水平上研究生命现象的科学。研究生物大分子(核酸、蛋白质)的结 构、功能和生物合成等方面来阐明各种生命现象的本质。研究内容包括各种生命过程如光合作用、发育的分子机制、神经活动的机理、癌的发生等。
从分子水平研究生物大分子的结构与功能从而阐明生命现象本质的科学。自20世纪50年代以来,分子生物学是生物学的前沿与生长点,其主要研究领域包括蛋白质体系、蛋白质-核酸体系 (中心是分子遗传学)和蛋白质-脂质体系(即生物膜)。
生物大分子,特别是蛋白质和核酸结构功能的研究,是分子生物学的基础。现代化学和物理学理论、技术和方法的应用推动了生物大分子结构功能的研究,从而出现了近30年来分子生物学的蓬勃发展。分子生物学和生物化学及生物物理学关系十分密切,它们之间的主要区别在于:①生物化学和生物物理学是用化学的和物理学的方法研究在分子水平,细胞水平,整体水平乃至群体水平等不同层次上的生物学问题。而分子生物学则着重在分子(包括多分子体系)水平上研究生命活动的普遍规律;②在分子水平上,分子生物学着重研究的是大分子,主要是蛋白质,核酸,脂质体系以及部分多糖及其复合体系。而一些小分子物质在生物体内的转化则属生物化学的范围;③分子生物学研究的主要目的是在分子水平上阐明整个生物界所共同具有的基本特征,即生命现象的本质;而研究某一特定生物体或某一种生物体内的某一特定器官的物理、化学现象或变化,则属于生物物理学或生物化学的范畴。
发展简史 结构分析和遗传物质的研究在分子生物学的发展中作出了重要的贡献。结构分析的中心内容是通过阐明生物分子的三维结构来解释细胞的生理功能。1912年英国 W.H.布喇格和W.L.布喇格建立了X射线晶体学,成功地测定了一些相当复杂的分子以及蛋白质的结构。以后布喇格的学生W.T.阿斯特伯里和J.D.贝尔纳又分别对毛发、肌肉等纤维蛋白以及胃蛋白酶、烟草花叶病毒等进行了初步的结构分析。他们的工作为后来生物大分子结晶学的形成和发展奠定了基础。50年代是分子生物学作为一门独立的分支学科脱颖而出并迅速发展的年代。首先是在蛋白质结构分析方面,1951年L.C.波林等提出了 α-螺旋结构,描述了蛋白质分子中肽链的一种构象。1955年F.桑格完成了胰岛素的氨基酸序列的测定。接着 J.C.肯德鲁和M.F.佩鲁茨在X射线分析中应用重原子同晶置换技术和计算机技术分别于1957和1959年阐明了鲸肌红蛋白和马血红蛋白的立体结构。1965年中国科学家合成了有生物活性的胰岛素,首先实现了蛋白质的人工合成。
另一方面,M.德尔布吕克小组从1938年起选择噬菌体为对象开始探索基因之谜。噬菌体感染寄主后半小时内就复制出几百个同样的子代噬菌体颗粒,因此是研究生物体自我复制的理想材料。1940年G.W.比德尔和E.L.塔特姆提出了“一个基因,一个酶”的假设,即基因的功能在于决定酶的结构,且一个基因仅决定一个酶的结构。但在当时基因的本质并不清楚。1944年O.T.埃弗里等研究细菌中的转化现象,证明了DNA是遗传物质。1953年J.D.沃森和F.H.C.克里克提出了DNA的双螺旋结构,开创了分子生物学的新纪元。在此基础上提出的中心法则,描述了遗传信息从基因到蛋白质结构的流动。遗传密码的阐明则揭示了生物体内遗传信息的贮存方式。1961年F.雅各布和J.莫诺提出了操纵子的概念,解释了原核基因表达的调控。到20世纪60年代中期,关于DNA自我复制和转录生成RNA的一般性质已基本清楚,基因的奥秘也随之而开始解开了。
仅仅30年左右的时间,分子生物学经历了从大胆的科学假说,到经过大量的实验研究,从而建立了本学科的理论基础。进入70年代,由于重组DNA研究的突破,基因工程已经在实际应用中开花结果,根据人的意愿改造蛋白质结构的蛋白质工程也已经成为现实。
基本内容 蛋白质体系 蛋白质的结构单位是α-氨基酸。常见的氨基酸共20种。它们以不同的顺序排列可以为生命世界提供天文数字的各种各样的蛋白质。
蛋白质分子结构的组织形式可分为 4个主要的层次。一级结构,也叫化学结构,是分子中氨基酸的排列顺序。首尾相连的氨基酸通过氨基与羧基的缩合形成链状结构,称为肽链。肽链主链原子的局部空间排列为二级结构。二级结构在空间的各种盘绕和卷曲为三级结构。有些蛋白质分子是由相同的或不同的亚单位组装成的,亚单位间的相互关系叫四级结构。
蛋白质的特殊性质和生理功能与其分子的特定结构有着密切的关系,这是形形色色的蛋白质所以能表现出丰富多彩的生命活动的分子基础。研究蛋白质的结构与功能的关系是分子生物学研究的一个重要内容。
随着结构分析技术的发展,现在已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。
发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究现在很受重视。
蛋白质-核酸体系 生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×106碱基对。人体细胞染色体上所含DNA为3×109碱基对。
遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代 DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。
基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出子代 DNA链。转录是在 RNA聚合酶的催化下完成的。转译的场所核糖核蛋白体是核酸和蛋白质的复合体,根据mRNA的编码,在酶的催化下,把氨基酸连接成完整的肽链。基因表达的调节控制也是通过生物大分子的相互作用而实现的。如大肠杆菌乳糖操纵子上的操纵基因通过与阻遏蛋白的相互作用控制基因的开关。真核细胞染色质所含的非组蛋白在转录的调控中具有特殊作用。正常情况下,真核细胞中仅2~15%基因被表达。这种选择性的转录与转译是细胞分化的基础。
蛋白质-脂质体系 生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。
1972年提出的流动镶嵌模型概括了生物膜的基本特征:其基本骨架是脂双层结构。膜蛋白分为表在蛋白质和嵌入蛋白质。膜脂和膜蛋白均处于不停的运动状态。
生物膜在结构与功能上都具有两侧不对称性。以物质传送为例,某些物质能以很高速度通过膜,另一些则不能。象海带能从海水中把碘浓缩 3万倍。生物膜的选择性通透使细胞内pH和离子组成相对稳定,保持了产生神经、肌肉兴奋所必需的离子梯度,保证了细胞浓缩营养物和排除废物的功能。
生物体的能量转换主要在膜上进行。生物体取得能量的方式,或是像植物那样利用太阳能在叶绿体膜上进行光合磷酸化反应;或是像动物那样利用食物在线粒体膜上进行氧化磷酸化反应。这二者能量来源虽不同,但基本过程非常相似,最后都合成腺苷三磷酸。对于这两种能量转换的机制,P.米切尔提出的化学渗透学说得到了越来越多的证据。生物体利用食物氧化所释放能量的效率可达70%左右,而从煤或石油的燃烧获取能量的效率通常为20~40%,所以生物力能学的研究很受重视。对生物膜能量转换的深入了解和模拟将会对人类更有效地利用能量作出贡献。
生物膜的另一重要功能是细胞间或细胞膜内外的信息传递。在细胞表面,广泛地存在着一类称为受体的蛋白质。激素和药物的作用都需通过与受体分子的特异性结合而实现。癌变细胞表面受体物质的分布有明显变化。细胞膜的表面性质还对细胞分裂繁殖有重要的调节作用。
对细胞表面性质的研究带动了糖类的研究。糖蛋白、蛋白聚糖和糖脂等生物大分子结构与功能的研究越来越受到重视。从发展趋势看,寡糖与蛋白质或脂质形成的体系将成为分子生物学研究的一个新的重要的领域。
理论意义和应用 分子生物学的成就说明:生命活动的根本规律在形形色色的生物体中都是统一的。例如,不论在何种生物体中,都由同样的氨基酸和核苷酸分别组成其蛋白质和核酸。遗传物质,除某些病毒外,都是DNA,并且在所有的细胞中都以同样的生化机制进行复制。分子遗传学的中心法则和遗传密码,除个别例外,在绝大多数情况下也都是通用的。
物理学的成就证明,一切物质的原子都由为数不多的基本粒子根据相同的规律所组成,说明了物质世界结构上的高度一致,揭示了物质世界的本质,从而带动了整个物理学科的发展。分子生物学则在分子水平上揭示了生命世界的基本结构和生命活动的根本规律的高度一致,揭示了生命现象的本质。和过去基本粒子的研究带动物理学的发展一样,分子生物学的概念和观点也已经渗入到基础和应用生物学的每一个分支领域,带动了整个生物学的发展,使之提高到一个崭新的水平。
过去生物进化的研究,主要依靠对不同种属间形态和解剖方面的比较来决定亲缘关系。随着蛋白质和核酸结构测定方法的进展,比较不同种属的蛋白质或核酸的化学结构,即可根据差异的程度,来断定它们的亲缘关系。由此得出的系统进化树,与用经典方法得到的是基本符合的。采用分子生物学的方法研究分类与进化有特别的优越性。首先,构成生物体的基本生物大分子的结构反映了生命活动中更为本质的方面。其次,根据结构上的差异程度可以对亲缘关系给出一个定量的,因而也是更准确的概念。第三,对于形态结构非常简单的微生物的进化,则只有用这种方法才能得到可靠结果。
高等动物的高级神经活动是极其复杂的生命现象,过去多是在细胞乃至整体水平上研究,近年来深入到分子水平研究的结果充分说明高级神经活动也同样是以生物大分子的活动为基础的。例如,在高等动物学习与记忆的过程中,大脑中RNA和蛋白质的组成发生明显的变化,并且一些影响生物体合成蛋白质的药物也显著地影响学习与记忆的能力。又如,“生物钟”是一种熟知的生物现象。用鸡进行的实验发现,有一种重要的神经传递介质(5-羟色胺)和一种激素(褪黑激素)以及控制它们变化的一种酶,在鸡脑中的含量呈24小时的周期性变化。正是这种变化构成了鸡的“生物钟”的物质基础。
在应用方面,生物膜能量转换原理的阐明,将有助于解决全球性的能源问题。了解酶的催化原理就能更有针对性地进行酶的人工模拟,设计出化学工业上广泛使用的新催化剂,从而给化学工业带来一场革命。
分子生物学在生物工程技术中也起了巨大的作用,1973年重组DNA技术的成功,为基因工程的发展铺平了道路。80年代以来,已经采用基因工程技术,把高等动物的一些基因引入单细胞生物,用发酵方法生产干扰素、多种多肽激素和疫苗等。基因工程的进一步发展将为定向培育动、植物和微生物良种以及有效地控制和治疗一些人类遗传性疾病提供根本性的解决途径。
从基因调控的角度研究细胞癌变也已经取得不少进展。分子生物学将为人类最终征服癌症做出重要的贡献。


用马克思主义哲学分析现实案例

儿童发展心理学


  一切科学都是主体能动地作用于客体的结果,都是人类智慧和经验的结晶。科学从根本的意义上讲,是一个相互联系 、相互依赖 、相互渗透的整体,我们可以根据科学研究对象性质的不同,把科学划分为自然科学、社会科学和哲学三大门类,它们分别研究自然界、人类社会和理论思维之运行的普遍规律。科学的发展是一个连续建构的历史过程,具有连贯性和客观性。心理学作为一门主要研究人类内部精神生活的科学,很难把它截然划归于某一门类之中,因为精神生活的主体在不同的条件、联系和关系中,同时既表现为生物的存在物,又表现为社会的存在物,还表现为思维着的存在物;而人类的精神活动又能够把握自然界、人类社会和理论思维的运动规律,并能权衡这些规律的科学价值。因此,如果画一个科学体系的三角形,三角形的三个顶点分别代表自然科学、社会科学和哲学三大门类,那么心理学大致处于这个科学体系三角形的中间位置上。从研究对象来看,心理学和哲学最接近,心理学所研究的主要对象是同哲学中最基本的理论问题,即物质和意识的相互关系问题直接联系着的。从心理发展的规律来看,心理学又最接近于社会科学,人的高级心理机能是在人际交往活动中,在运用语言符号系统汲取人类社会历史经验的过程中发生发展的,因此人类的心理活动过程从本质上看是一种文化过程,它不受生物学规律的支配,而是遵从社会文化历史发展的规律。 从心理学研究的具体科学方法技术来看, 它又最接近于自然科学,心理学是一门能够用经验事实加以验证的实验科学,正是由于它采用了自然科学的实验方法,才于1879年从哲学的母腹中脱胎而出,成为一门独立的科学;许多国家为了促进心理学的繁荣,把心理研究所设在科学院内,并动用自然科学研究基金加以扶植。因此,我们对心理学在科学体系中的地位必须作多维度的理解,其中,心理学研究对象所具有的特殊的矛盾性在这种多维理解中居于主导地位, 因此从总体上说, 心理学和哲学的关系最为密切。

  儿童发展心理学在心理科学中又居于什么地位呢?现代心理学业已形成一个学科体系,我们可以把这众多的心理学分支划归为两大领域:①基础心理学;②应用心理学。儿童发展心理学正是处于基础研究和应用研究的交界面上,但从本质上看,儿童发展心理学更贴近基础研究领域。发展心理学主要研究心理的种系发展和个体发展的规律,而儿童发展心理学又是这个学科体系中最主要的分支,因为儿童发展心理学能充分揭示心理发展的动力及其机制,以及影响心理发展的各种因素。20世纪20年代以来,儿童发展心理学的基础研究的地位不断得到强化,这是由于在基础研究中发生法日益成为心理学理论思维的重要工具,即用社会文化历史和个体心理起源的观点来解释人的心理实质,用心理机能形成的过程来说明心理机能的涵义,使心理学的发展从描述性阶段向说明性阶段过渡,儿童发展心理学能够为此提供说明性的控制论模型。

   儿童发展心理学对于马克思主义哲学理论的贡献

  (一)儿童发展心理学对唯物史观的贡献

  历史唯物主义的创立是马克思主义哲学的最大成就,并为一切真正的社会科学的发展奠定了坚实的理论基础。历史唯物主义坚持社会存在决定社会意识的原理。儿童的实际生活过程即是一种社会存在,一种客观现实,是第一性的东西,它决定了的儿童心理的发展。儿童心理作为第二性的东西,是由他的社会存在的反映。儿童心理发展由他的社会存在所决定的原理,为论证历史唯物主义的正确性提供了科学的根据。

  (二)儿童发展心理学对认识论的贡献

  认识论在本质上是一种思维如何适应于客观现实的理论,从而确定主客体之间的关系。认识论的核心问题也就是思维和存在的同一性问题。实践的观点是马克思主义认识论的首要的和基本的观点,人们的实际生活过程在本质上是实践性的。实践活动是主客体之间发生相互作用、相互联系和相互转化的中介和桥梁。实践第一的观点必然导致唯物主义,因为实践活动本身是一种客观现实, 是一种社会存在, 而环境的改变又是和实践活动水平相符的。人们认识的发展依赖于实践活动的不断深入。把实践引进认识论,可以说是辩证唯物主义创立过程中最具革命性的事件。儿童发展心理学从个体心理发展的角度为马克思主义认识论的科学性提供了事实根据。儿童心理是在主客体相互作用的反馈环路系统中发生发展的,而儿童自发的整体性的躯体动作是儿童心理发生的现实基础。外部的躯体性的感性活动会逐渐内化为内部的理性活动,但在任何情况下,实践活动总是内部的思维活动的基础,并且二者是不可分割的。儿童心理在活动中发展的过程,也就是儿童的心理反映和客观现实逐渐相一致的过程,这个心理反映的客观性过程在个体心理的发展中是永无止境的。

  (三)儿童发展心理学对辩证法的贡献

  马克思主义辩证法坚持发展的原理,承认事物的普遍联系。发展是对立面的统一,一切现象和过程都具有矛盾着的、相互排斥的、对立的倾向,事物内部的矛盾斗争是事物发展的根本动力;事物发展是一个从量变到质变的转化过程,这种转化在于飞跃,在于渐进过程的中断;事物发展不是直线式的,而是按否定之否定的途径波浪式或螺旋式地上升前进;辩证的思维方式要求按事物的普遍联系的原理坚持系统的整体观,从事物之间相互联系的中介环节和转化过程入手把握事物发展的规律。儿童心理发展的根本动力在于主客体之间的矛盾斗争,这种矛盾斗争的转化机制即是同化和顺应之间的平衡化过程;儿童心理发展是一个从量变到质变的过程,这个过程由于渐进的中断而产生飞跃,从而使心理发展显示出年龄阶段性;每一阶段新的心理结构的产生是对已有的旧结构的整合,这是一个“扬弃”过程,而不是简单的否定,因此心理发展的曲线是呈波浪型上升的;对于儿童心理的发展只有坚持系统的整体观和普遍联系的发展观才能把握其规律,因此对于主客体之间的相互转化、主体活动的中介作用、各个年龄阶段之间的衔接、各种心理机能的统整作用等等,均须坚持普遍联系的发展观。对儿童心理发展规律的探索极大地丰富了马克思主义辩证法的宝库。


什么是科学问题?它在科学研究中的地位和作用如何

科学问题是指一定时代的科学家在特定的知识背景下提出的关于科学知识和科学实践中需要解决而尚未解决的问题。它包括一定的求解目标和应答域,但尚无确定的答案。其要素包括事实基础、理论背景、问题指向、求解目标、求解范围等。科学研究起源于问题,问题又有两类:一类是经验问题,关注的是经验事实与理论的相容性,即经验事实对理论的支持或否证,以及理论对观察的渗透,理论预测新的实验事实的能力等问题;另一类是概念问题,关注的是理论本身的自洽性,洞察力,精确度,统一性以及与其他理论的相容程度和理论竞争等问题。科学研究提供的对自然界作出统一理解的实在图景,解释性范式或模型就是“自然秩序理想”,它使分散的经验事实互相联系起来,构成理论体系的基本公理和原则,是整个科学理论的基础和核心。扩展资料哲学家和科学家经常试图给何为科学和科学方法提供一个充分的本质主义定义但并不很成功。尼采认为,人们容易忘记,科学其实是一种社会的、历史的和文化的人类活动,它是在发明而不是在发现不变的自然规律。某些后现代主义哲学家,像费耶阿本德(Feyerabend)和罗蒂,可能会同意他的这种看法,他也认为,落入科学主义窠臼是愚蠢的---科学主义相信科学能最终解决所有人类问题。或者发现隐藏在我们感觉经验到的日常世界背后的某些真是世界的隐藏真理,他完全支持把科学视为一种现象学的、实用的---因此不太野心勃勃的---活动的观点。参考资料来源:百度百科-科学问题

晶体学的应用

在材料科学中的应用晶体学是材料科学家常常使用的研究工具。若所要研究物质为单晶体,则其原子排布结构直接决定了晶体的外形。另外,结晶材料的许多物理性质都极大地受到晶体内部缺陷(如杂质原子、位错等等)的影响,而研究这些缺陷又必须以研究晶体结构作为基础。在多数情况下,研究的材料都是多晶体,因此粉末衍射在确定材料的微观结构中起着极其重要的作用。除晶体结构因素外,晶体学还能确定其他一些影响材料物理性质的因素。譬如:粘土中含有大量细小的鳞片状矿物颗粒。这些颗粒容易在自身平面方向作相对滑动,但在垂直自身平面的方向则极难发生相对运动。这些机制可以利用晶体学中的织构测量进行研究。物相分析晶体学在材料科学中的另一个应用是物相分析。材料中不同化学成分或同一种化学成分常常以不同物相的形式出现,每一相的原子结构和物理性质都不相同,因此要确定或涉及材料的性质,相分析工作十分重要。譬如,纯铁在加热到912℃时,晶体结构会发生从体心立方(body-centered cubic,简称bcc)到面心立方(face-centered cubic,简称fcc)的相转变,称为奥氏体转变。由于面心立方结构是一种密堆垛结构,而体心立方则较松散,这解释了铁在加热过912℃后体积减小的现象。典型的相分析也是通过分析材料的X射线衍射结果来进行的。晶体学理论涉及各种空间点阵对称关系的枚举,因此常需借助数学中的群论进行研究。参见对称群。在生物学中的应用X射线晶体学是确定生物大分子,尤其是蛋白质和核酸(如DNA、RNA)构象的主要方法。DNA分子的双螺旋结构就是通过晶体学实验数据发现的。1958年,科学家(Kendrew, J.C. et al.)首次通过研究生物大分子的晶体结构,利用X射线分析方法得到了肌红蛋白分子的空间模型(Nature 181, 662–666)。 如今,研究人员已建立起了蛋白质数据库(Protein Data Bank,PDB),将已测明的蛋白质和其他生物大分子的结构供人们免费查询。利用蛋白质三维结构分析软件RasMol,还可对数据进行可视化。电子晶体学应用在某些蛋白质,如膜蛋白(membrane protein)和病毒壳体蛋白(viral capsid)结构的研究中。

结晶学的在生物学中的应用

X射线晶体学是确定生物大分子,尤其是蛋白质和核酸(如DNA、RNA)构象的主要方法。DNA分子的双螺旋结构就是通过晶体学实验数据发现的。1958年,科学家(Kendrew, J.C. et al.)首次通过研究生物大分子的晶体结构,利用X射线分析方法得到了肌红蛋白分子的空间模型(Nature 181, 662–666)。 如今,研究人员已建立起了蛋白质数据库(Protein Data Bank,PDB),将已测明的蛋白质和其他生物大分子的结构供人们免费查询。利用蛋白质结构分析软件RasMol,还可对数据进行可视化。中子射线晶体学可以与X射线晶体学互补,获得X射线晶体学中经常缺失的生物大分子氢原子位置的信息。电子晶体学应用在某些蛋白质,如膜蛋白(membrane protein)和病毒壳体蛋白(viral capsid)结构的研究中。

晶体坐标系的选择

1.晶体定向与晶体的坐标系统晶体定向(crystal orientating)就是在晶体中选定一个与晶体对称特征相符合的坐标系统,使晶体中各种几何要素得到相应的空间取向。与数学上的坐标系相似,晶体的坐标系也包括两个最基本的要素,即轴单位和轴角。晶体定向的本质就是要选择晶轴并确定各个晶轴上的轴单位。晶轴(crystallographic axis)即晶体的坐标轴,与晶体中一定的行列相适应,一般有3个,分别记作X、Y和Z轴或a、b和c轴。各结晶轴的交点位于晶体中心。晶轴的安置是以上下直立方向为Z轴,正端朝上;前后方向为X轴,正端在前;左右方向为Y轴,右端为正(图5-1)。这种由3个晶轴构成的坐标系称三轴坐标系。习惯上,人们还为三方和六方晶系的晶体设置了另一套坐标系统,即在水平方向上安置了正端交角互为120°的3个晶轴,分别称为X,Y和U轴或a,b和u轴,X轴的正端朝左前方,Y轴正端朝正右方,U轴正端朝左后方,直立轴仍为Z轴或c轴,正端朝上,构成四轴坐标系(图5-2)。晶轴选定后,各晶轴间的空间关系就确定了。我们把晶轴正端之间的交角称为轴角(inter-axial angle),分别以a代表b轴∧c轴、β代表a轴∧c轴、γ代表a轴∧b轴(图5-1,图5-2)。事实上,晶轴选定后,每个晶轴上用于计量长度的轴单位也就确定了。因为,轴单位(axial unit distance)就是每个晶轴上所对应行列的结点间距。设X,Y和Z轴对应行列的结点间距为a0,b0,c0,则X,Y和Z轴的轴单位就是a0,b0,c0。在晶体形态研究中,由于有关的讨论只涉及晶面、晶棱等的方向而不涉及它们的具体位置和大小,因此实际上无需知道3个结晶轴单位的绝对长度,只需根据晶体的对称特点定出3个轴单位之间的比值就可以了。在此,我们把X,Y和Z三个结晶轴的轴单位连比记作a:b:c,称为轴率(axial ratios)。轴率通常写成以b为1的连比式A:1:C,在此A=a/b,C=c/b。例如重晶石晶体的轴率写为a:b:c=1.6290:1:1.3132。图5-1 三轴坐标系的晶轴与轴角图5-2 四轴坐标系的晶轴与轴角2.各晶系晶体定向的选轴原则选择晶轴时应遵循以下原则:1)应符合晶体所固有的对称性。为此,晶轴应与对称轴或对称面的法线重合;若无对称轴和对称面,晶轴可平行晶棱选取。2)在上述前提下,应尽可能使各晶轴相互垂直或近于垂直,并使轴单位趋于相等(在晶体宏观形态上是使轴率趋于1),即尽可能使之趋于a=b=c;a=β=γ=90°。由于对称上的特殊性,六方和三方晶系晶体采用四轴定向,其他晶系都采用三轴定向。各晶系中各个对称型的晶体定向方法见表5-1。选定晶体的坐标系统并对晶体进行定向后,我们就掌握了描述晶体对称型国际符号方向性的合适工具。各晶系对称型国际符号不同序位所代表的结晶学方向如表5-2。表5-1 各晶系晶体定向表续表表5-2 各晶系对称型的国际符号中序位所代表的晶体方向

结晶学的实验技术

晶体学研究的某些材料,如蛋白质,在自然状态下并非晶体。培养蛋白质或类似物质晶体的典型过程,是将这些物质的水溶液静置数天、数周甚至数月,让它通过蒸发、扩散而结晶。通常将一滴溶有待结晶物质分子、缓冲剂和沉淀剂的水溶液置于一个放有吸湿剂的密封容器内,随着水溶液中的水慢慢蒸发,被吸湿剂吸收,水溶液浓度缓慢增加,溶质就可能形成较大的结晶。如果溶液的浓度增加速度过快,析出的溶质则为大量取向随机的微小颗粒,难以进行研究。晶体获得后,便可以通过衍射方法对其进行研究。尽管当今许多大学和科研单位均使用各种小型X射线源进行晶体学研究,但理想的X射线源却是通常体积庞大的同步加速器(同步辐射光源)。同步辐射X射线波谱宽、强度和准直度极高,应用于晶体学研究可大大提高精确度和研究效率。从晶体的衍射花样推测晶体结构的过程称为衍射花样的标定,涉及较繁琐的数学计算,常常要根据和衍射结果的比较对模型进行反复的修改(该过程一般称为modeling and refinement)。在这个过程中,晶体学家要计算出可能晶格结构的衍射花样,并与实际得到的花样进行对比,综合考虑各种因素后进行多次筛选和修正,最终选定一组(通常不止一种)与实验结果最大程度吻合的猜测作为推测的结果。这是一个异常繁琐的过程,但如今由于电脑的广泛应用,标定工作已经大大简化了。除上述针对晶体的衍射分析方法外,纤维和粉末也可以进行衍射分析。这类试样虽然没有单晶那样的高度周期性,但仍表现出一定的有序度,可利用衍射分析得到其内部分子的许多信息。譬如,DNA分子的双螺旋结构就是基于对纤维试样的X射线衍射结果的分析而提出,最终得到验证的。

有机化合物鉴定的一般流程

答:结晶溶剂选择的一般原则及判定结晶纯度的方法。结晶溶剂选择的一般原则:对欲分离的成分热时溶解度大,冷时溶解度小;对杂质冷热都不溶或冷热都易溶。沸点要适当,不宜过高或过低,如乙醚就不宜用。或者利用物质与杂质在不同的溶剂中的溶解度差异选择溶剂判定结晶纯度的方法:理化性质均一;固体化合物熔距≤2℃;TLC或PC呈单一斑点;HPLC或GC分析呈单峰。现代结晶学主要包括以下几个分支:(1)晶体生成学(crystallogeny):研究天然及人工晶体的发生、成长和变化的过程与机理,以及控制和影响它们的因素。(2)几何结晶学(gometricalcrystallography):研究晶体外表几何多面体的形状及其间的规律性。(3)晶体结构学(crystallology):研究晶体内部结构中质点排而的规律性,以及晶体结构的不完善性。(4)晶体化学(crystallochemistry,亦称结晶化学):研究晶体的化学组成与晶体结构以及晶体的物理、化学性质间关系的规律性。(5)晶体物理学(crystallophysics):研究晶体的各项物理性质及其产生的机理。溶剂方面:是制备结晶的关键所在。除yangdongyu提到的外,选择时可用少量各种不同溶剂试验其溶解度,包裹冷时和热时。一般首选乙醇。


对晶体结构怎么判定

结晶溶剂选择的一般原则及判定结晶纯度的方法。
结晶溶剂选择的一般原则:对欲分离的成分热时溶解度大,冷时溶解度小;对杂质冷热都不溶或冷热都易溶。沸点要适当,不宜过高或过低,如乙醚就不宜用。或者利用物质与杂质在不同的溶剂中的溶解度差异选择溶剂

判定结晶纯度的方法:理化性质均一;固体化合物熔距≤2℃;TLC或PC展开呈单一斑点;HPLC或GC分析呈单峰。

现代结晶学主要包括以下几个分支:
(1)晶体生成学(crystallogeny):研究天然及人工晶体的发生、成长和变化的过程与机理,以及控制和影响它们的因素。
(2)几何结晶学(gometricalcrystallography):研究晶体外表几何多面体的形状及其间的规律性。
(3)晶体结构学(crystallology):研究晶体内部结构中质点排而的规律性,以及晶体结构的不完善性。
(4)晶体化学(crystallochemistry,亦称结晶化学):研究晶体的化学组成与晶体结构以及晶体的物理、化学性质间关系的规律性。
(5)晶体物理学(crystallophysics):研究晶体的各项物理性质及其产生的机理。

溶剂方面:是制备结晶的关键所在。除yangdongyu提到的外,选择时可用少量各种不同溶剂试验其溶解度,包裹冷时和热时。一般首选乙醇。另外,尽可能选择单一溶剂,这样在大生产时也可较好的解决母液回收套用问题,降低成本。研究时,混合溶剂一般会有更好效果。还有安全,价廉也是考虑因素。


晶体学的表示方法

密勒指数晶体中的晶向用方括号括起的三个最小互质坐标值来标出,譬如:[100];在对称操作中等价的一组晶向称为晶向族,用尖括号括起的三个最小互质坐标值来标出,譬如 。在正方晶系中,上述晶向族中包含的晶向有六个晶向;晶面的密勒指数用圆括号括起,如(100)。在正方晶系中,(hkl) 晶面垂直于 [hkl] 晶向;与晶向族的定义类似,在对称操作中等价的一组晶面称为晶面族,用花括号括起,如 。 晶体学研究的某些材料,如蛋白质,在自然状态下并非晶体。培养蛋白质或类似物质晶体的典型过程,是将这些物质的水溶液静置数天、数周甚至数月,让它通过蒸发、扩散而结晶。通常将一滴溶有待结晶物质分子、缓冲剂和沉淀剂的水溶液置于一个放有吸湿剂的密封容器内,随着水溶液中的水慢慢蒸发,被吸湿剂吸收,水溶液浓度缓慢增加,溶质就可能形成较大的结晶。如果溶液的浓度增加速度过快,析出的溶质则为大量取向随机的微小颗粒,难以进行研究。晶体获得后,便可以通过衍射方法对其进行研究。尽管当今许多大学和科研单位均使用各种小型X射线源进行晶体学研究,但理想的X射线源却是通常体积庞大的同步加速器(同步辐射光源)。同步辐射X射线波谱宽、强度和准直度极高,应用于晶体学研究可大大提高精确度和研究效率。从晶体的衍射花样推测晶体结构的过程称为衍射花样的标定,涉及较繁琐的数学计算,常常要根据和衍射结果的比较对模型进行反复的修改(该过程一般称为modeling and refinement)。在这个过程中,晶体学家要计算出可能晶格结构的衍射花样,并与实际得到的花样进行对比,综合考虑各种因素后进行多次筛选和修正,最终选定一组(通常不止一种)与实验结果最大程度吻合的猜测作为推测的结果。这是一个异常繁琐的过程,但如今由于电脑的广泛应用,标定工作已经大大简化了。除上述针对晶体的衍射分析方法外,纤维和粉末也可以进行衍射分析。这类试样虽然没有单晶那样的高度周期性,但仍表现出一定的有序度,可利用衍射分析得到其内部分子的许多信息。譬如,DNA分子的双螺旋结构就是基于对纤维试样的X射线衍射结果的分析而提出,最终得到验证的。

知识相关

知识推荐

求职简历网为你分享个人简历、求职简历、简历模板、简历范文等求职简历知识。

Copyrights 2018-2024 求职简历网 All rights reserved.