当前位置:求职简历网 > 知识 > 正文

光学教程

散射的拉曼散射 拉曼散射(Ramanscattering),光通过介质时由于入射光与分子运动相互作用而引起的频率发生变化的散射。又称拉曼效应。1923年A.G.S.斯梅卡尔从理论上预言了频率发生改变的散射

散射的拉曼散射

拉曼散射(Ramanscattering),光通过介质时由于入射光与分子运动相互作用而引起的频率发生变化的散射。又称拉曼效应。1923年A.G.S.斯梅卡尔从理论上预言了频率发生改变的散射。1928年,印度物理学家C.V.拉曼在气体和液体中观察到散射光频率发生改变的现象。拉曼散射遵守如下规律:散射光中在每条原始入射谱线(频率为v0)两侧对称地伴有频率为v0±vi(i=1,2,3,…)的谱线,长波一侧的谱线称红伴线或斯托克斯线,短波一侧的谱线称紫伴线或反斯托克斯线;频率差vi与入射光频率v0无关,由散射物质的性质决定,每种散射物质都有自己特定的频率差,其中有些与介质的红外吸收频率相一致。拉曼散射的强度比瑞利散射(见光的散射)要弱得多。 以经典理论解释拉曼散射时,认为分子以固有频率vi振动,极化率(见电极化率)也以vi为频率作周期性变化,在频率为v0的入射光作用下,v0与vi两种频率的耦合产生了v0、v0+vi和v0-vi3种频率。频率为v0的光即瑞利散射光,后两种频率对应拉曼散射谱线。拉曼散射的完善解释需用量子力学理论,不仅可解释散射光的频率差,还可解决强度和偏振等一类问题。拉曼散射为研究晶体或分子的结构提供了重要手段,在光谱学中形成了拉曼光谱学的一分支。用拉曼散射的方法可迅速定出分子振动的固有频率,并可决定分子的对称性、分子内部的作用力等。自激光问世以后,关于激光的拉曼散射的研究得到了迅速发展,强激光引起的非线性效应导致了新的拉曼散射现象。

印度科学家拉曼是如何发现光散射效应的

在光的散射现象中有一特殊效应,和X射线散射的康普顿效应类似,光的频率在散射后会发生变化。频率的变化决定于散射物质的特性。这就是拉曼效应,是拉曼在研究光的散射过程中于1928年发现的。在拉曼和他的合作者宣布发现这一效应之后几个月,苏联的兰兹伯格(G.Landsberg)和曼德尔斯坦(L.Mandelstam)也独立地发现了这一效应,他们称之为联合散射。拉曼光谱是入射光子和分子相碰撞时,分子的振动能量或转动能量和光子能量叠加的结果,利用拉曼光谱可以把处于红外区的分子能谱转移到可见光区来观测。因此拉曼光谱作为红外光谱的补充,是研究分子结构的有力武器。   1930年诺贝尔物理学奖授予印度加尔各答大学的拉曼(SirChandrasekhara Venkata Raman,1888——1970),以表彰他研究了光的散射和发现了以他的名字命名的定律。   在光的散射现象中有一特殊效应,和X射线散射的康普顿效应类似,光的频率在散射后会发生变化。频率的变化决定于散射物质的特性。这就是拉曼效应,是拉曼在研究光的散射过程中于1928年发现的。在拉曼和他的合作者宣布发现这一效应之后几个月,苏联的兰兹伯格(G.Landsberg)和曼德尔斯坦(L.Mandelstam)也独立地发现了这一效应,他们称之为联合散射。拉曼光谱是入射光子和分子相碰撞时,分子的振动能量或转动能量和光子能量叠加的结果,利用拉曼光谱可以把处于红外区的分子能谱转移到可见光区来观测。因此拉曼光谱作为红外光谱的补充,是研究分子结构的有力武器。   1921年夏天,航行在地中海的客轮“纳昆达”号(S.S.Narkunda)上,有一位印度学者正在甲板上用简便的光学仪器俯身对海面进行观测。他对海水的深蓝色着了迷,一心要追究海水颜色的来源。这位印度学者就是拉曼。他正在去英国的途中,是代表了印度的最高学府——加尔各答大学,到牛津参加英联邦的大学会议,还准备去英国皇家学会发表演讲。这时他才33岁。对拉曼来说,海水的蓝色并没有什么稀罕。他上学的马德拉斯大学,面对本加尔(Bengal)海湾,每天都可以看到海湾里变幻的海水色彩。事实上,他早在16岁(1904年)时,就已熟悉著名物理学家瑞利用分子散射中散射光强与波长四次方成反比的定律(也叫瑞利定律)对蔚蓝色天空所作的解释。不知道是由于从小就养成的对自然奥秘刨根问底的个性,还是由于研究光散射问题时查阅文献中的深入思考,他注意到瑞利的一段话值得商榷,瑞利说:“深海的蓝色并不是海水的颜色,只不过是天空蓝色被海水反射所致。”瑞利对海水蓝色的论述一直是拉曼关心的问题。他决心进行实地考察。于是,拉曼在启程去英国时,行装里准备了一套实验装置:几个尼科尔棱镜、小望远镜、狭缝,甚至还有一片光栅。望远镜两头装上尼科尔棱镜当起偏器和检偏器,随时都可以进行实验。他用尼科尔棱镜观察沿布儒斯特角从海面反射的光线,即可消去来自天空的蓝光。这样看到的光应该就是海水自身的颜色。结果证明,由此看到的是比天空还更深的蓝色。他又用光栅分析海水的颜色,发现海水光谱的最大值比天空光谱的最大值更偏蓝。可见,海水的颜色并非由天空颜色引起的,而是海水本身的一种性质。拉曼认为这一定是起因于水分子对光的散射。他在回程的轮船上写了两篇论文,讨论这一现象,论文在中途停靠时先后寄往英国,发表在伦敦的两家杂志上。   拉曼1888年11月7日出生于印度南部的特里奇诺波利。父亲是一位大学数学、物理教授,自幼对他进行科学启蒙教育,培养他对音乐和乐器的爱好。他天资出众,16岁大学毕业,以第一名获物理学金奖。19岁又以优异成绩获硕士学位。1906年,他仅18岁,就在英国著名科学杂志《自然》发表了论文,是关于光的衍射效应的。由于生病,拉曼失去了去英国某个著名大学作博士论文的机会。独立前的印度,如果没有取得英国的博士学位,就没有资格在科学文化界任职。但会计行业是唯一的例外,不需先到英国受训。于是拉曼就投考财政部以谋求职业,结果获得第一名,被授予总会计助理的职务。拉曼在财政部工作很出色,担负的责任也越来越重,但他并不想沉浸在官场之中。他念念不忘自己的科学目标,把业余时间全部用于继续研究声学和乐器理论。加尔各答有一所学术机构,叫印度科学教育协会,里面有实验室,拉曼就在这里开展他的声学和光学研究。经过十年的努力,拉曼在没有高级科研人员指导的条件下,靠自己的努力作出了一系列成果,也发表了许多论文。1917年加尔各答大学破例邀请他担任物理学教授,使他从此能专心致力于科学研究。他在加尔各答大学任教十六年期间,仍在印度科学教育协会进行实验,不断有学生、教师和访问学者到这里来向他学习、与他合作,逐渐形成了以他为核心的学术团体。许多人在他的榜样和成就的激励下,走上了科学研究的道路。其中有著名的物理学家沙哈(M.N.Saha)和玻色(S.N.Bose)。这时,加尔各答正在形成印度的科学研究中心,加尔各答大学和拉曼小组在这里面成了众望所归的核心。1921年,由拉曼代表加尔各答大学去英国讲学,说明了他们的成果已经得到了国际上的认同。   拉曼返回印度后,立即在科学教育协会开展一系列的实验和理论研究,探索各种透明媒质中光散射的规律。许多人参加了这些研究。这些人大多是学校的教师,他们在休假日来到科学教育协会,和拉曼一起或在拉曼的指导下进行光散射或其它实验,对拉曼的研究发挥了积极作用。七年间他们共发表了大约五六十篇论文。他们先是考察各种媒质分子散射时所遵循的规律,选取不同的分子结构、不同的物态、不同的压强和温度,甚至在临界点发生相变时进行散射实验。1922年,拉曼写了一本小册子总结了这项研究,题名《光的分子衍射》,书中系统地说明了自己的看法。在最后一章中,他提到用量子理论分析散射现象,认为进一步实验有可能鉴别经典电磁理论和光量子1923年4月,他的学生之一拉玛纳桑(K.R.Ramanathan)第一次观察到了光散射中颜色改变的现象。实验是以太阳作光源,经紫色滤光片后照射盛有纯水或纯酒精的烧瓶,然后从侧面观察,却出乎意料地观察到了很弱的绿色成份。拉玛纳桑不理解这一现象,把它看成是由于杂质造成的二次辐射,和荧光类似。因此,在论文中称之为“弱荧光”。然而拉曼不相信这是杂质造成的现象。如果真是杂质的荧光,在仔细提纯的样品中,应该能消除这一效应。   在以后的两年中,拉曼的另一名学生克利希南(K.S.Krishnan)观测了经过提纯的65种液体的散射光,证明都有类似的“弱荧光”,而且他还发现,颜色改变了的散射光是部分偏振的。众所周知,荧光是一种自然光,不具偏振性。由此证明,这种波长变化的现象不是荧光效应。   拉曼和他的学生们想了许多办法研究这一现象。他们试图把散射光拍成照片,以便比较,可惜没有成功。他们用互补的滤光片,用大望远镜的目镜配短焦距透镜将太阳聚焦,试验样品由液体扩展到固体,坚持进行各种试验。   与此同时,拉曼也在追寻理论上的解释。1924年拉曼到美国访问,正值不久前A.H.康普顿发现X射线散射后波长变长的效应,而怀疑者正在挑起一场争论。拉曼显然从康普顿的发现得到了重要启示,后来他把自己的发现看成是“康普顿效应的光学对应”。拉曼也经历了和康普顿类似的曲折,经过六七年的探索,才在1928年初作出明确的结论。拉曼这时已经认识到颜色有所改变、比较弱又带偏振性的散射光是一种普遍存在的现象。他参照康普顿效应中的命名“变线”,把这种新辐射称为:“变散射”(modified scattering)。拉曼又进一步改进了滤光的方法,在蓝紫滤光片前再加一道铀玻璃,使入射的太阳光只能通过更窄的波段,再用目测分光镜观察散射光,竟发现展现的光谱在变散射和不变的入射光之间,隔有一道暗区。   就在1928年2月28日下午,拉曼决定采用单色光作光源,做了一个非常漂亮的有判决意义的实验。他从目测分光镜看散射光,看到在蓝光和绿光的区域里,有两根以上的尖锐亮线。每一条入射谱线都有相应的变散射线。一般情况,变散射线的频率比入射线低,偶而也观察到比入射线频率高的散射线,但强度更弱些。   不久,人们开始把这一种新发现的现象称为拉曼效应。1930年,美国光谱学家武德(R.W.Wood)对频率变低的变散射线取名为斯托克斯线;频率变高的为反斯托克斯线。   拉曼发现反常散射的消息传遍世界,引起了强烈反响,许多实验室相继重复,证实并发展了他的结果。1928年关于拉曼效应的论文就发表了57篇之多。科学界对他的发现给予很高的评价。拉曼是印度人民的骄傲,也为第三世界的科学家作出了榜样,他大半生处于独立前的印度,竟取得了如此突出的成就,实在令人钦佩。特别是拉曼是印度国内培养的科学家,他一直立足于印度国内,发愤图强,艰苦创业,建立了有特色的科学研究中心,走到了世界的前列。   1934年,拉曼和其他学者一起创建了印度科学院,并亲任院长。1947年,又创建拉曼研究所。他在发展印度的科学事业上立下了丰功伟绩。拉曼抓住分子散射这一课题是很有眼力的。在他持续多年的努力中,显然贯穿着一个思想,这就是:针对理论的薄弱环节,坚持不懈地进行基础研究。拉曼很重视发掘人才,从印度科学教育协会到拉曼研究所,在他的周围总是不断涌现着一批批赋有才华的学生和合作者。就以光散射这一课题统计,在三十年中间,前后就有66名学者从他的实验室发表了377篇论文。他对学生谆谆善诱,深受学生敬仰和爱戴。拉曼爱好音乐,也很爱鲜花异石。他研究金刚石的结构,耗去了他所得奖金的大部分。晚年致力于对花卉进行光谱分析。在他80寿辰时,出版了他的专集:《视觉生理学》。拉曼喜爱玫瑰胜于一切,他拥有一座玫瑰花园。拉曼1970年逝世,享年82岁,按照他生前的意愿火葬于他的花园里碰撞理论孰是孰非。


教育和学习的区别

教育和培训的本质区别导致两者存在很大的不同,主要表现在以下几个方面:一、中心点的区别教师、学员和管理者都是教育和培训活动的主体,但教育和培训的中心点是不一样的。教育强调的是教师传授知识,学生获取知识,课程和教学内容是学校规定好的,教师教什么,学生就学什么,因此,教育的中心是教师。在培训活动中参训者都是成年人,他们都有一定的教育背景和工作经验,他们之所以参加培训不只是为了获取信息,更重要的是为了提高能力和提升发展空间。对他们来说培训活动强调的是参训者需要什么,参训者能够通过培训真正学到什么,培训师就应该传授什么,而不是培训师愿意教什么就教什么,因此,培训的中心是学员。二、学习内容的区别教育提供的教学内容强调的是培养学生基础理论知识的掌握与运用。培训强调的则是与企业工作密切相关的知识和技能的掌握和运用。三、过程的区别教育的过程是一个以个人为导向的过程,个人在接受教育前对学什么专业和毕业后做什么会有很多选择,在接受教育的过程中也可以充分发挥自己的特长,张扬自己的个性。培训的过程则是一个以企业工作和任务为导向的过程,你一旦进入特定的企业之后,企业会要求你在某个工作岗位上在一段时期内保持相对的稳定,并要求你与企业目标保持一致,与企业规范保持统一,认同企业文化和价值观。你不可再率性而为,你的个性可能会相对受到制约,你的特长也可能会在一段时期内得不到发挥,你需要去适应新的环境并很快地融入到企业生活中。拓展资料培训就是培养+训练。就是通过培养加训练使受训者掌握某种技能的方式。目前,国内培训主要以技能培训为主,侧重于行为之前。 为了达到统一的科学技术规范、标准化作业,通过目标规划设定、知识和信息传递、技能熟练演练、作业达成评测、结果交流公告等现代信息化的流程,让受训者通过一定的教育训练技术手段,达到预期的水平提高目标,提升战斗力,个人能力,工作能力的训练都称之为培训!培训是给有经验或无经验的受训者传授其完成某种行为必需的思维认知、基本知识和技能的过程。基于认知心理学理论可知,职场正确认知(内部心理过程的输出)的传递效果才是决定培训效果好坏的根本。

近代物理,光学用什么书好

光学设计
作者:刘钧,高明 编著 本书系统地论述了“光学设计”课程的基本理论及设计方法,重点介绍了具有普遍意义的典型光学系统的有关设计内容,以阐明光学设计中带有共性的问题。
全书分四部分,共14章。第一部分是光学设计的基础理论(第1~5章);第二部分是典型光学系统设计(第6~11章);第三部分是夜视仪器的光学系统(第12章);第四部分是光学设计软件ZEMAX简介和光学制图(第13、14章) 。
本书可作为已具备应用光学基础的本科生或研究生的教材。也可作为实际光学设计的参考资料。 本书系统地论述了光学设计的基本理论及设计方法,重点介绍了具有普遍意义的典型光学系统的有关设计内容,以阐明光学设计中带有共性的问题。
本书可供高等工科院校测控技术与仪器专业及光电信息工程专业师生使用,同时也可供从事光学系统及光电仪器的研究、设计、制造和系统开发的工程技术人员学习和参考。
本书系统地论述了“光学设计”课程的基本理论及设计方法,重点介绍了具有普遍意义的典型光学系统的有关设计内容,以阐明光学设计中带有共性的问题。
全书分四部分,共14章。第一部分是光学设计的基础理论(第1~5章);第二部分是典型光学系统设计(第6~11章);第三部分是夜视仪器的光学系统(第12章);第四部分是光学设计软件ZEMAX简介和光学制图(第13、14章)。
本书可作为已具备应用光学基础的本科生或研究生的教材。也可作为实际光学设计的参考资料。 第1章 绪论
1.1 光学设计的发展概况
1.2 光学系统设计的具体过程和步骤
1.3 仪器对光学系统性能与质量的要求
第2章 像差综述
2.1 轴上点球差
2.2 正弦差及彗差
2.3 像散与像面弯曲(场曲)
2.4 畸变
2.5 色差
2.6 波像差
第3章 光学系统的像质评价和像差容限
3.1 几何像差的曲线表示 3.2 瑞利(Reyleigh)判断和中心点亮度
3.3 分辨率
3.4 点列图
3.5 利用光学传递函数评价成像质量
3.6 其他像评价方法
3.7 光学系统的像差公差
第4章 光学系统的外形尺寸计算
第5章 光学系统的初始结构计算方法
第6章 望远镜物镜设计
第7章 显微镜物镜设计
第8章 目镜设计
第9章 照相物镜设计
第10章 照明光学系统设计
第11章 轴对称非球面设计概述
第12章 夜视仪器的光学系统
第13章 光学设计软件ZEMAX简介
第14章 光学制图
附录


急求~!!!《大学计算机基础教程》(人民邮电出版社)的课后习题答案

一.简答题:
  1.电子计算机的发展大致可分哪几代?请说出各个时代电子计算机的特点。
  1. 第一代电子计算机
  第一代电子计算机是电子管计算机,时间大约为1946年第一台计算机研制成功到20世纪50年代后期。这一时期计算机的主要特点是:采用电子管作为基本元件,程序设计使用机器语言或汇编语言;主要用于科学和工程计算;运算速度为每秒几千次至几万次。
  2. 第二代电子计算机
  第二代电子计算机是晶体管计算机,时间大约从20世纪50年代中期到20世纪60年代后期。这一时期计算机主要采用晶体管为基本元件,体积缩小、功耗降低,提高了运算速度(每秒运算可达几十万次)和可靠性;用磁芯作主存储器,外存储器采用磁盘、磁带等;程序设计采用高级语言,如FORTRAN、COBOL、ALGOL等;在软件方面还出现了操作系统。计算机的应用范围进一步扩大,除进行传统的科学和工程计算外,还应用于数据处理等更广泛的领域。
  3. 第三代电子计算机
  第三代电子计算机是集成电路计算机,时间大约从20世纪60年代中期到20世纪70年代前期。这一时期的计算机采用集成电路作为基本元件,体积减小,功耗、价格等进一步降低,而运算速度及可靠性则有了更大的提高;用半导体存储代替了磁芯存储器;运算速度每秒可达几十万次到几百万次;在软件方面,操作系统日臻完善。这时计算机设计思想已逐步走向标准化、模块化和系列化,应用范围更加广泛。
  4. 第四代电子计算机
  第四代电子计算机是大规模集成电路计算机,时间从20世纪70年代初至今。这一时期计算机的主要功能元件采用大规模集成电路;并用集成度更高的半导体芯片作为主存储器;运算速度可达每秒百万次至亿次。在系统结构方面,处理机系统、分布式系统、计算机网络的研究进展迅速;系统软件的发展不仅实现了计算机运行的自动化,而且正在向智能化方向迈进;各种应用软件层出不穷,极大地方便了用户。
  20世纪70年代初期,以LSI为基础的微型计算机得到了迅猛发展。由于微型机体积小、耗电少、价格低、性能高、可靠性好、使用方便等优点,被应用到了社会生活的各个方面,使计算机的应用更为普及。

  2.新一代计算机的发展趋势是什么?
  今后计算机还将不断地发展,从结构和功能等方面看,大致有以下几种趋势:
   巨型化:由于科学技术发展的需要,许多部门要求计算机具有更高的速度和更大的存储容量,从而使计算机向巨型化发展。
   微型化:计算机体积更小、重量更轻、价格更低、更便于应用于各个领域及各种场合。目前市场上已出现的各种笔记本计算机、膝上型和掌上型计算机都是向这一方向发展的产品。
   网络化:计算机网络是计算机技术和通信技术互相渗透、不断发展的产物。计算机联网可以实现计算机之间的通信和资源共享。目前,各种计算机网络,包括局域网和广域网的形成,无疑将加速社会信息化的进程。
   多媒体化:传统的计算机处理信息的主要对象是字符和数字,人们通过键盘、鼠标和显示器对文字和数字进行交互。而在人类生活中,更多的是图、文、声、像等多种形式的信息。由于数字化技术的发展进一步改进了计算机的表现能力,使现代计算机可以集图形、声音、文字处理为一体,使人们面对的是有声有色、图文并茂的信息环境,这就是通常所说的多媒体计算机技术。多媒体技术使信息处理的对象和内容发生了深刻变化。

  3.计算机系统的组成包括哪两个部分?各部分的主要组成有哪些?
  计算机系统由硬件系统和软件系统组成。
  硬件系统由计算机所包含的基本硬件,和为用户提供人机交互手段以及大规模数据存储能力所配置的外部设备组成。常见的外部设备有键盘、鼠标、显示器、硬盘、打印机等等。
  1. 运算器
  2. 控制器
  3. 存储器
  4. 输入设备
  5. 输出设备
  软件系统包括系统软件、编译程序、数据库管理软件和各种应用软件等。系统软件用于有效地管理计算机系统的各种资源,合理地组织计算机的工作流程,并为用户提供友好的人机接口。比如最常见的系统软件就是操作系统。
  计算机软件系统包括系统软件和应用软件两大类。

  4.硬件和软件的关系是什么?
  硬件与软件是相辅相成的。硬件是计算机的物质基础,没有硬件就无所谓计算机。软件是计算机的灵魂,没有软件,计算机的存在就毫无价值。硬件系统的发展给软件系统提供了良好的开发环境,而软件系统发展又给硬件系统提出了新的要求。

  5.简述冯•诺依曼结构计算机的设计思想。
  冯•诺依曼设计思想可以简要地概括为以下三点:
  (1)计算机应包括运算器、存储器、控制器、输入和输出设备五大基本部件。
  (2)计算机内部应采用二进制来表示指令和数据。每条指令一般具有一个操作码和一个地址码。其中操作码表示运算性质,地址码指出操作数在存储器中的地址。
  (3)将编好的程序送入内存储器中,然后启动计算机工作,计算机无需操作人员干预,能自动逐条取出指令和执行指令。
  冯•诺依曼设计思想最重要之处在于明确地提出了“程序存储”的概念,他的全部设计思想实际上是对“程序存储”概念的具体化。

  6.简述二进制、八进制、十进制和十六进制的特点。
  (1)十进制(Decimal)
  基数是10,它有10个数字符号,即0、l、2、3、4、5、6、7、8、9。其中最大数码是基数减1,即9,最小数码是0。
  (2)二进制(Binary)
  基数是2,它只有两个数字符号,即0和1。这就是说,如果在给定的数中,除0和1外还有其他数,例如 1012,它就决不会是一个二进制数。
  (3)八进制(Octal)
  基数是8,它有8个数字符号,即0、l、2、3、4、5、6、7。最大的也是基数减1,即7,最小的是0。
  (4)十六进制(Hexadecilnal)
  基数是16,它有16个数字符号,除了十进制中的10个数可用外,还使用了6个英文字母。它的16个数字依次是0、l、2、3、4、5、6、7、8、9、A、B、C、D、E、F。其中A至F分别代表十进制数的10至15,最大的数字也是基数减1。

  7.简述微机操作系统的种类,以及各种类的特点。
  DOS操作系统
  Windows操作系统
  Macintosh操作系统
  Linux操作系统

  二.计算题:
  1.(213)D =( 11010101)B =( D5 )H =(325)O
  2.(127)D =( 1111111)B =(7F)H =(177)O
  3.(69.625)D =( 1000101.101)B =(45.A)H =(105.5)O
  4.(3E1)H =(1111100001)B =(993)D
  5.(10A)H =(412)O =(266)D
  6.(670)O =(110111000)B =(440)D
  7.(10110101101011)B =(2D6B)H =(26553)O =(11627)D
  8.(11111111000011)B =(3FC3)H =(37703)O =(16323)D


光是什么?

光是什么科学表明,光是地球生命的来源之一。光是人类生活的重要依据;光是人类认识外部世界的工具;光是信息的理想载体或传播媒质。那么,什么是光呢?狭义上光是一种人类眼睛可以见到的电磁波,我们称之为可见光谱。在科学上的定义,光是指所有的电磁波谱。光是由一种称为光子的基本粒子组成。具有粒子性与波动性。有实验证明,光就是电磁辐射,这部分电磁波的波长范围约在红光的0.77微米到紫光的0.39微米之间。波长在0.77微米以上到1000微米左右的电磁波称为“红外线”。在0.39微米以下到0.04微米左右的称“紫外线”。红外线和紫外线不能引起视觉,但可以用光学仪器或摄影方法去量度和探测这种发光物体的存在。所以,在光学中光的概念也可以延伸到红外线和紫外线领域,甚至X射线均被认为是光,而可见光的光谱只是电磁光谱中的一部分。科学实验表明,光具有波粒二象性,既可把光看做是一种频率很高的电磁波,也可把光看成是一个粒子,即光量子,简称光子。光波,包括红外线,它们的波长比微波更短,频率更高,因此,从电通信中的微波通信向光通信方向发展,是一种自然的也是一种必然的趋势。一般情况下,光由许多光子组成,在荧光(普通的太阳光、灯光、烛光等)中,光子与光子之间,毫无关联,即它们的波长不一样、相位不一样,偏振方向不一样、传播方向不一样,就像是一支无组织、无纪律的光子部队,各光子都是散兵游勇,不能做到行动一致。当光反射时,反射角等于入射角,在同一平面,位于法线两边,且光路可逆行。 对人类来说,光的最大规模的反射现象,发生在月球上。我们知道,月球本身是不发光的,它只是反射太阳的光。相传为记载夏、商、周三代史实的《书经》中就提起过这件事。可见那个时候,人们就已有了光的反射观念。战国时的著作《周髀》就明确指出:“日兆月,月光乃生,成明月。”西汉时人们干脆说“月如镜体”,可见对光的反射现象有了深一层的认识。《墨经》里专门记载一个光的反射实验:以镜子把日光反射到人体上,可使人体的影子处于人体和太阳之间。这不但是演示了光的反射现象,而且很可能是以此解释月魄的成因。我们知道,当光线从一种介质斜射入另一种介质中,会产生折射。如果射入的介质密度大于原本光线所在介质密度,则折射角小于入射角。反之,若小于,则折射角大于入射角。但入射角为0,则无论如何,折射角为零,不产生折射。但光折射还在同种不均匀介质中产生,理论上可以从一个方向射入不产生折射,但因为分不清界线且一般分好几个层次又不是平面,故无论如何看都会产生折射。 比如说,鱼儿在清澈的水里面游动,可以看得很清楚。然而,沿着你看见鱼的方向去叉它,却叉不到。有经验的渔民都知道,只有瞄准鱼的下方才能把鱼叉到, 鱼叉叉向的是鱼的实像。从上面看水,玻璃等透明介质中的物体,会感到物体的位置比实际位置高一些,这是光的折射现象引起的。由于光的折射,池水看起来比实际的浅。所以,当你站在岸边,看见清澈见底,深不过齐腰的水时,千万不要贸然下去,以免因为对水深估计不足,惊慌失措,发生危险。把一块厚玻璃放在钢笔的前面,笔杆看起来好像“错位”了,这种现象也是光的折射引起的。光到底是什么?这是一个值得研究和必须研究的问题。当今物理学研究已经达到了一个瓶颈,即相对论与量子论的冲突,光的本质是基本微粒还是和声音一样的波,对未来研究具有指导性作用。光无时无刻不伴随我们左右,灯光、太阳光、星光以及动物本身发出的光,如萤火虫等。在开始进行光的分类之前,首先了解一下光源的含义。自身能够发光的物体称为光源。而科学家们又将光源分冷光源和热光源。那么什么是冷光源呢?冷光源是指发光不发热(或发很低温度的热)的光源。如萤火虫等。反之,热光源就是指发光发热(必须是发高温度的热)的光源。如太阳等。 其实,在某些时候,光源也可以分为以下三种:第一种是热效应产生的光,太阳光就是很好的例子。此外,蜡烛等物品也都一样。此类光随着温度的变化会改变颜色。第二种是原子发光,荧光灯灯管内壁涂抹的荧光物质被电磁波能量激发而产生光,此外霓虹灯的原理也是一样。原子发光具有独自的基本色彩,所以,彩色拍摄时我们需要进行相应的补正。第三种是原子炉发光,这种光携带有强大的能量,但是我们在日常生活中几乎没有接触到这种光的机会。色散 关于色散,早在中国古代便有了与之相关的认识,它起源于对自然色散现象——虹的认识。虹,是太阳光沿着一定角度射入空气中的水滴所引起的比较复杂的由折射和反射造成的一种色散现象。中国早在殷代甲骨文里就有了关于虹的记载。战国时期《楚辞》中有把虹的颜色分为“五色”的记载。南宋程大昌(公元1123~1195年)在《演繁露》中记述了露滴分光的现象,并指出,日光通过一个液滴也能化为多种颜色,实际是色散,而这种颜色不是水珠本身所具有,而是日光的颜色造成的,这就明确指出了日光中包含有数种颜色,经过水珠的作用而显现出来,可以说,他已接触到色散的本质了。我国从晋代开始,许多典籍都记载了晶体的色散现象。如记载过孔雀毛及某种昆虫表皮在阳光下不断变色的现象,太阳光照射云母片,经反射后可观察到各种颜色的光。李时珍也曾指出较大的六棱形水晶和较小的水晶珠,都能形成色散。到了明末,方以智在所著《物理小识》中综合前人研究的成果,对色散现象作了极精彩的概括。他把带棱的自然晶体和人工烧制的三棱晶体将白光分成五色,与向日喷水而成的五色人造虹、日光照射飞泉产生的五色现象,以及虹霓之彩、日月之晕、五色之云等自然现象联系起来,认为“皆同此理”,即都是白光的色散。所有这些都表明中国明代以前对色散现象的本质已有了一定的认识,但也反映中国古代物理学知识大都是零散、经验性的知识。那么,究竟什么是色散呢?复色光分解为单色光而形成光谱的现象叫做光的色散。色散可以利用棱镜或光栅等作为“色散系统”的仪器来实现。复色光进入棱镜后,由于它对各种频率的光具有不同折射率,各种色光的传播方向有不同程度的偏折,因而在离开棱镜时就各自分散,形成光谱。如一细束阳光可被棱镜分为红、橙、黄、绿、蓝、靛、紫七色光。这是由于复色光中的各种色光的折射率不相同。当它们通过棱镜时,传播方向有不同程度的偏折,因而在离开棱镜时便各自分散。介质折射率随光波频率或真空中的波长而变,当复色光在介质界面上折射时,介质对不同波长的光有不同的折射率,各色光因折射角不同而彼此分离。1672年,牛顿利用三棱镜将太阳光分解成彩色光带,这是人们首次做的色散实验。任何介质的色散均可分正常色散和反常色散两种。让一束白光射到玻璃棱镜上,光线经过棱镜折射以后就在另一侧面的白纸屏上形成一条彩色的光带,其颜色的排列是靠近棱镜顶角端是红色,靠近底边的一端是紫色,中间依次是橙黄绿蓝靛,这样的光带叫光谱。光谱中每一种色光不能再分解出其他色光,称它为单色光。由单色光混合而成的光叫复色光。自然界中的太阳光、白炽电灯和日光灯发出的光都是复色光。当光照到物体上时,一部分光被物体反射,一部分光被物体吸收。如果物体是透明的,还有一部分透过物体。不同物体,对不同颜色的反射、吸收和透过的情况不同,因此呈现不同的色彩。光的传播光在同种均匀介质中是沿直线传播的。光可以在真空、空气、水等透明的物质中传播。光沿着直线传播的前提不仅是在均匀介质,而且必须是同种介质。当光遇到另一介质时,光的方向会发生改变,改变后依然沿直线传播。光在非均匀介质中,一般是按曲线传播的。光按前后左右上下各个方向传播,光的亮度越亮,越不容易看出,当光亮度较暗时,由发光体到照明参照物的光会扩大,距离越远,扩散得越大,由最初的形状扩散到消失为止。像我们生活中所发现的小孔成像、日食和月食的形成等都证明了光在均匀介质中沿直线传播这一事实。光的速度夏天打雷下雨时,有些人可能会很困惑,为什么在每次雷雨中,总是先看到闪电,后听到雷声呢?今天,我们就带着这个问题讨论一下光速。所谓光速,就是光在单位时间内传播的速度。科学计算得出光在真空中的速度为30万千米/秒。通俗一点讲,就是光可以在一秒走60万里地,而我们知道声速只是335米/秒。这就是我们在打雷下雨时为何先看到闪电而后听到雷声的缘故了。既然光速这么快,那么我们看距离我们1.5亿千米远的太阳需要多长时间呢?科学家得出的结论是约八分钟,即光从离我们1.5亿千米远的太阳上发射出来,到达地球大约需要八分钟。 其实,早在17世纪以前,天文学家和物理学家便认为光速是无限大的,宇宙恒星发出的光都是瞬时到达地球。1676年丹麦天文学家罗默,利用天文观测,测量了光速。1849年法国科学家斐索在实验室里,用巧妙的装置首次在地面上成功地测出了光速。1973年美国标准局的埃文森采用激光方法利用频率和波测定光速为(299792485+1.2)米/秒。经1975年第十五届国际计量大会确认,上述光速作为国际推荐值使用。1983年第十七届国际计量大会上通过米的新定义为“真空中光在1/299792458秒时间间隔内行程的长度。”在人们测出光速之后,它便取代了保存在巴黎国际计量局的铂制米原器被选作定义“米”的标准,并且约定光速严格等于299792458米/秒,米被定义为1/299792458秒内光通过的路程,光速用“c”来表示。超光速 超光速会成为一个讨论题目,源自于相对论中对于局域物体不可超过真空中光速c的推论限制,光速成为许多场合下速率的上限值。在此之前的牛顿力学并未对超光速的速度作出限制。而在相对论中,运动速度和物体的其他性质,如质量甚至它所在参考系的时间流逝等,密切相关。速度低于(真空中)光速的物体如果要加速达到光速,其质量会增长到无穷大,因而需要无穷大的能量,而且它所感受到的时间流逝甚至会停止(如果超过光速则会出现“时间倒流”),所以理论上来说达到或超过光速是不可能的(至于光子,那是因为它们永远处于光速,而不是从低于光速增加到光速)。但也因此使得物理学家(以及普通大众)对于一些“看似”超光速的物理现象特别感兴趣。所谓“时光倒流”就是光的多普勒效应, 并不是真的“时间”倒流,而是世界的感觉“倒流”。 多普勒效应根本上是由于波的传播速度是绝对的,只与介质有关,与声源和接受物体运动状况无关。 换句话说,波的传播应以介质作为参考系。 突破光速屏障时会有“光障”现象。可与超音速飞行类比,并不是不可能。光速不变的条件是:介质稳定。因为在任何稳定的介质中,任何波的速度都不变,与参照系无关。当声波的介质相对于测量者静止时,无论声源速度如何变化,声速不变(只改变音频),这是著名的多普勒实验,其他所有机械波都有类似现象。 钟慢、尺缩、超光速时间倒流现象,都可以用声音试验做出结果,这只能证明爱因斯坦的结论有问题,他忽略了测量速度的问题,把现象当成了物理本质。 经现在研究,表明已有超光速速度——某些恒星爆炸抛射碎片,其碎片运动速度已超过光速,但速度不固定,有快有慢。不过,现在学术界仍称光速为最快速度。光年通常情况下,由于地球上的距离有些短,用千米来讨论就足够了。例如,地球距月球38万千米,太阳距地球1.5亿千米等。然而倘若我们用千米做尺度来衡量宇宙间距离的话,似乎有点不合时宜。于是,当我们去测量我们与许多恒星之间的距离时,我们发现不得不用一个非常巨大的数字来表达。正如科学家研究不同颜色的光的波长而发明一个特殊单位“埃”那样。所以科学家们发明了一个特殊的测量空间距离的单位,这就是光年。一光年就是光行走一年的距离。这是个很可观的数字,因为光一秒钟就走300000千米。一光年大约为 10万亿千米。距我们最近的亮星半人马座α星,也有4光年多。可见星系之间的距离有多远了。光由太阳到达地球需时约8分钟(地球跟太阳的距离为8“光分”)。已知距离太阳系最近的恒星为半人马座比邻星,它与太阳系的距离为4.22光年。我们所处的星系——银河系的直径约为10万光年。 假设有一近于光速的宇宙飞船从银河系的一端到另一端,它将需要多于10万年的时间。但这只是对于(相对于银河系)静止的观测者而言,飞船上的人员感受到的旅程实际只有数分钟。这是由于狭义相对论中的移动时钟的时间膨胀现象。微粒与波的争议17世纪,以牛顿为首的学者认为:光是由一颗颗像小弹丸一样的机械微粒所组成的粒子流,发光物体接连不断地向周围空间发射高速直线飞行的光粒子流,一旦这些光粒子进入人的眼睛,冲击视网膜,就引起了视觉,这就是光的微粒说。牛顿用微粒说轻而易举地解释了光的直进、反射和折射现象。由于微粒说通俗易懂,又能解释常见的一些光学现象,所以很快获得了人们的承认和支持。 19世纪,光的干涉、衍射、偏振等实验证明了光是一种波,麦克斯韦又提出了光是一种电磁波的理论,更完善了光的波动学说。 20世纪,人们对光到底是“粒子”还是“波”的问题进行了很长时间的探讨。最后统一了认识,光和所有其他微观粒子一样具有粒子性和波动性的两重性,光是一种波长很短的电磁波。而后来爱因斯坦的光子学说很好地解释了光电效应现象,从而确立了光的微粒性的牢固地位。如今,人们认识到:光是由叫做光子的微粒组成的,同时具有波动的性质——波粒二象性。经过长期的探索,人们对光的认识越来越深入了,而且从发现光的波粒二象性起,人们已开始主动地去探索微观世界的奥秘。知识点电磁波电磁波,又称电磁辐射,是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面,有效的传递能量和动量。电磁辐射可以按照频率分类,从低频率到高频率,包括无线电波、微波、红外线、可见光、紫外光、X射线和伽马射线等。人眼可接收到的电磁辐射,波长大约在380纳米至780纳米之间,称为可见光。只要是本身温度大于绝对零度的物体,都可以发射电磁辐射,而世界上并不存在温度等于或低于绝对零度的物体。

知识相关

知识推荐

求职简历网为你分享个人简历、求职简历、简历模板、简历范文等求职简历知识。

Copyrights 2018-2024 求职简历网 All rights reserved.